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Abstract
I investigate dense coding with a general mixed state on the Hilbert space
Cd ⊗Cd shared between a sender and receiver. The following result is proved.
When the sender prepares the signal states by mutually orthogonal unitary
transformations with equala priori probabilities, the capacity of dense coding
is maximized. It is also proved that the optimal capacity of dense codingχ∗
satisfiesER(ρ) � χ∗ � ER(ρ) + log2 d, whereER(ρ) is the relative entropy
of entanglement of the shared entangled state.

PACS numbers: 03.67.−a, 03.67.Hk, 89.70.+c

1. Introduction

Quantum entanglement plays an essential role in various types of quantum information
processing. A notable example is the dense coding (sometimes called superdense coding)
originally proposed by Bennett and Wiesner [1]. Its scheme is as follows. Suppose
that the sender (Alice) and receiver (Bob) initially share a maximally entangled pair of
qubits (an Einstein–Podolsky–Rosen (EPR) state),|	−〉 = (|↑〉A |↓〉B − |↓〉A |↑〉B) /

√
2,

where |↑〉A(B) = (1,0)t and |↓〉A(B) = (0,1)t . Alice performs one of four possible
unitary transformations{I2, σ 1, σ 2, σ 3} on her qubit, whereI2 stands for the two-
dimensional identity andσ i (i = 0, 1, 2, 3) are the Pauli matrices. According to her
choice of transformations, the EPR state is transformed into one of four mutually orthogonal
states{|	−〉,−|�−〉,√−1|�+〉, |	+〉}, where |	+〉 = (|↑〉A |↓〉B + |↓〉A |↑〉B) /

√
2 and

|�±〉 = (|↑〉A |↑〉B ± |↓〉A |↓〉B) /
√

2. Now she sends off her qubit to Bob, who performs an
orthogonal measurement on the joint system of the received qubit and his original one. The
measured outcome unambiguously distinguishes the signal state that Alice prepared. Thus,
sending asingle qubit transmits log24 = 2 bits of classical information. This is absolutely
impossible without entanglement; the amount of information conveyed by anisolated qubit
cannot exceed one bit. Mattleet al [2] have experimentally demonstrated dense coding
transmission using polarization-entangled photons. Barenco and Ekert [3] and Hausladen
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et al [4] have argued about the generalization of two-state systems in the Bennett–Wiesner
dense coding scheme toN-state quantum systems. Dense coding for continuous variables
has also been proposed by Braunstein and Kimble [5]. Boseet al [6] have shown that
equal probabilities for the signal states yield the maximum capacity when the initially shared
entangled states of two qubits are pure states or Bell diagonal states under the condition that
the set of unitary transformations is restricted to{I2, σ 1, σ 2, σ 3}. However, when the shared
entangled state is a general mixed one, the optimal dense coding scheme is still unknown. In
this paper, I prove that the dense coding scheme with the set of mutually orthogonal unitary
transformations and equal signal probabilities is optimal for any entangled states inCd ⊗ Cd

shared between the sender and receiver.

2. Capacity for dense coding

The general density matrix for a system onCd ⊗ Cd is written in the Hilbert–Schmidt
representation as

ρ = 1

d2


Id ⊗ Id +

d2−1∑
i=1

riλi ⊗ Id + Id ⊗
d2−1∑
i=1

siλi +
d2−1∑
i,j=1

tij λi ⊗ λj


 (1)

whereri, si, andtij are real numbers. In equation (1) theλi (i = 1,2, . . . , d2 − 1) are the
generators ofSU(d) algebra satisfying

Tr (λi) = 0. (2)

The generatorsλi are given by [7]

{λi}d2−1
i=1 = {u1,2, u1,3, . . . , ud−1,d , v1,2, v1,3, . . . , vd−1,d , w1, w2, . . . , wd−1} (3)

where

ui,j = Pi,j + Pj,i (4)

and

vi,j = √−1(Pi,j − Pj,i ) (5)

with 1 � i < j � d, and

wk = −
√

2

k(k + 1)

(
k∑

i=1

Pi,i − kPk+1,k+1

)
(6)

with 1 � k � d − 1. In equations (4)–(6),

Pi,j = |i〉 〈j | (7)

with {|i〉}di=1 being the orthonormal basis set onCd ; |1〉 = (1,0, . . . ,0)t , |2〉 =
(0,1, . . . ,0)t , . . . , |d〉 = (0,0, . . . ,1)t .

In general dense coding, Alice performs one of the local unitary transformationsUi ∈
U(d) on herd-dimensional quantum system to put the initially shared entangled stateρ in
ρi = (Ui ⊗ Id )ρ(U

†
i ⊗ Id ) with a priori probabilitypi(i = 0,1, . . . , imax), and then she

sends off her quantum system to Bob. Upon receiving this quantum system, Bob performs a
suitable measurement onρi to extract the signal. The optimal amount of information that can
be conveyed is known to be bounded from above by the Holevo quantity [8]

χ = S(ρ̄) −
imax∑
i=0

piS(ρi) (8)
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whereS(ρ) = −Tr(ρ log2 ρ) denotes the von Neumann entropy and ¯ρ = ∑imax
i=0 piρi is the

average density matrix of the signal ensemble. Since the Holevo quantity is asymptotically
achievable [9, 10], I use equation (8) here as the definition of the capacity of dense coding as
in [4, 6]. Since the von Neumann entropy is invariant under unitary transformations,S(ρi) =
S(ρ). Therefore, the dense coding capacityχ of equation (8) can be rewritten as

χ = S(ρ̄) − S(ρ). (9)

It is also written as

χ =
imax∑
i=0

piS(ρi‖ρ̄) (10)

whereS(ρ‖σ) = Tr [ρ(log2 ρ − log2 σ)] is the quantum relative entropy ofρ with respect to
σ .

3. Optimal capacity

The problem is to find the optimal signal ensemble{ρi;pi}imax
i=0 that maximizesχ . Below

I show that thed2 signal states (imax = d2 − 1) generated by mutually orthogonal unitary
transformations with equal probabilities yield the maximumχ . This is the central result of
this paper. The mutually orthogonal unitary transformations are constructed as

Ui=(p,q)|j 〉 = exp

(√−1
2π

d
pj

)
|j + q(modd)〉 (11)

where integersp andq run from 0 tod − 1 such that the number of sufficesi is d2; 0 = (p = 0,
q = 0), 1= (p = 0, q = 1), . . . , d2 − 1 = (p = d − 1, q = d − 1). Note thatUi=0 = Id. The
unitary matrices thus defined satisfy the orthogonality relation,d−1Tr (U †

i Uj ) = δij . From
now on, the ensemble of signal states generated by the unitary transformations of equation
(11) with the equal probabilitiespi = d−2 is denotedE∗:

E∗ = {
(Ui ⊗ Id)ρ(U

†
i ⊗ Id );pi = d−2}d2−1

i=0 . (12)

Furthermore, the capacity of dense coding with signal state ensembleE∗ is denotedχ∗, which

is given byS(ρ̄∗) − S(ρ), where ¯ρ∗ = d−2∑d2−1
i=0 (Ui ⊗ Id)ρ(U

†
i ⊗ Id ) is the average state

of E∗. In verifying the main result (theorem 1), the following three lemmas are crucial.

Lemma 1. The average state of E∗ is separable and is given by

ρ̄∗ = 1

d
Id ⊗ ρB (13)

where ρB = TrA(ρ).

Proof. It is easy to show that

d2−1∑
i=0

UiPj,kU
†
i = δjkdId (14)

wherePj,k is defined in equation (7). Applying equation (14) to the definition ofλj (equation
(3) with equations (4)–(6)), we have

d2−1∑
i=0

UiλjU
†
i = 0 (15)
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for j = 1, . . . , d2 − 1. Making use of equation (15), ¯ρ∗ is calculated as

ρ̄∗ = 1

d2

d2−1∑
i=0

(Ui ⊗ Id)ρ(U
†
i ⊗ Id ) = 1

d
Id ⊗ 1

d


Id +

d2−1∑
i=1

siλi


 . (16)

This is clearly separable or disentangled. By noting thatρB = TrA(ρ) = d−1(Id +∑d2−1
i=1 siλi), we readily obtain equation (13). �

Lemma 2. For any state ω written as (U⊗Id )ρ(U †⊗Id ) with U ∈ U(d), the quantum relative
entropy of ω with respect to ρ̄∗ is equal to χ∗;

S(ω‖ρ̄∗) = χ∗. (17)

Proof. The density matrixρ of equation (1) is rewritten as

ρ = 1

d
Id ⊗ ρB +

1

d2


d2−1∑

i=1

riλi ⊗ Id +
d2−1∑
i,j=1

tij λi ⊗ λj


 . (18)

Therefore,

ω = (U ⊗ Id )ρ(U † ⊗ Id )

= 1

d
Id ⊗ ρB +

1

d2


d2−1∑

i=1

ri (UλiU
†) ⊗ Id +

d2−1∑
i,j=1

tij (UλiU
†) ⊗ λj


 . (19)

Now, from the result of lemma 1,

log2 ρ̄
∗ = Id ⊗ log2

(
ρB

d

)
. (20)

From equations (19) and (20),

Tr (ω log2 ρ̄
∗) = Tr (ρ̄∗ log2 ρ̄

∗) +
1

d2




d2−1∑
i=1

riTr

[
(UλiU

†) ⊗ log2

(
ρB

d

)]

+
d2−1∑
i,j=1

tij Tr

[
(UλiU

†) ⊗ λj log2

(
ρB

d

)]
 . (21)

By using the formula Tr(A ⊗ B) = Tr(A)Tr(B) and the properties ofλi of equation (2), the
last term of the right-hand side of equation (21) vanishes; Tr(ω log2 ρ̄

∗) = Tr(ρ̄∗ log2 ρ̄
∗) =

−S(ρ̄∗). We thus obtain

S(ω‖ρ̄∗) = Tr [ω(log2 ω − log2 ρ̄
∗)]

= −S(ω) + S(ρ̄∗) = −S(ρ) + S(ρ̄∗). (22)

In the last line of equation (22), the equalityS (ω) = S (ρ) was used. Sinceχ∗ = S(ρ̄∗)−S(ρ),
S(ω‖ρ̄∗) = χ∗. This completes the proof. �

Lemma 3. The average quantum relative entropy of signal ensemble {ρk; pk} with respect to
a density matrix ρ′ is given by∑

k

pkS(ρk‖ρ′) =
∑
k

pkS(ρk‖ρ̄) + S(ρ̄‖ρ′) (23)

where pk � 0,
∑

k pk = 1, and ρ̄ = ∑
k pkρk .

Equation (23) is known as Donald’s identity [11].
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Theorem 1. The dense coding capacity χ∗ is maximum. That is, for all possible signal
ensembles {ωi; qi}imax

i=0,

χ∗ �
imax∑
i=0

qiS(ωi‖ω̄) (24)

where ω̄ = ∑imax
i=0 qiωi .

Proof. SinceS(ωi‖ρ̄∗) = χ∗ for i = 0,1, . . . , imax (lemma 2),

χ∗ =
imax∑
i=0

qiS(ωi‖ρ̄∗). (25)

Applying Donald’s identity (23) of lemma 3 to the right-hand side of equation (25), we obtain
χ∗ = χ + S(ω̄‖ρ̄∗), whereχ = ∑imax

i=0 qiS(ωi‖ω̄), the dense coding capacity with ensemble

{ωi; qi}imax
i=0. Since the relative entropy is strictly non-negative,S(ω̄‖ρ̄∗) � 0,χ∗ � χ . That is,

χ∗ is indeed the optimal dense coding capacity; i.e.,E∗ is the optimal signal ensemble. This
completes the proof. �

Equation (17) means that the average ensemble ¯ρ∗ has themaximal distance property
[13]; that is,S(ω‖ρ̄∗) cannot exceedχ∗ for anyω = (U ⊗ Id)ρ(U † ⊗ Id ). Theorem 1 is also
the direct consequence of this fact. Note that the optimal dense coding scheme ford = 2 is
reduced to Bennett and Wiesner’s scheme.

4. Bounds on optimal capacity

Next, I prove the following theorem concerning the bounds onχ∗.

Theorem 2. The optimal capacity χ∗ satisfies

ER(ρ) � χ∗ � ER(ρ) + log2 d (26)

where ER (ρ) is the relative entropy of entanglement of ρ.

The relative entropy of entanglement is defined asER(ρ) = minσ∈D S(ρ‖σ), where
the minimum is taken overD, the set of all disentangled states [12]. The proof of the first
inequality of equation (26) is essentially the same as that given in [6] ford = 2. By noting
thatρ̄∗ is a disentangled state (lemma 1), we get

S(ρi‖ρ̄∗) � min
σ∈D

S(ρi‖σ) = ER(ρi). (27)

Consequently,

χ∗ = 1

d2

d2−1∑
i=0

S(ρi‖ρ̄∗) � 1

d2

d2−1∑
i=0

ER(ρi). (28)

Since the relative entropy of entanglement is invariant under local unitary operations [12],
ER(ρi) = ER[(Ui ⊗ Id)ρ(U

†
i ⊗ Id)] = ER(ρ). Therefore,χ∗ � ER (ρ). The second part of

the inequality in (26) ford = 2 has been conjectured previously in [6]. In the proof of this
inequality, the following relation given by Plenioet al [14]

max{S(ρA) − S(ρ), S(ρB) − S(ρ)} � ER(ρ) (29)

plays a key role. It implies that

S(ρB) − S(ρ) � ER(ρ). (30)
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Now, from equations (13) and (20), we have

S(ρ̄∗) = −Tr (ρ̄∗ log2 ρ̄
∗)

= −Tr

[(
Id ⊗ ρB

d

)(
Id ⊗ log2

ρB

d

)]

= −Tr (Id )Tr

(
ρB

d
log2

ρB

d

)
= S(ρB) + log2 d. (31)

In the last line of equation (31), the fact that Tr (ρB) = 1 was used. Substituting equation (31)
into the left-hand side of (30), we readily obtain

S(ρ̄∗) − S(ρ) � ER(ρ) + log2 d. (32)

Since the left-hand side of (32) is justχ∗, we haveχ∗ � ER (ρ) + log2 d. For d = 2, it has
been proved that the equality holds whenρ is the Bell diagonal state with only two non-zero
eigenvalues [6].

5. Conclusions

In summary, it has been proved that optimal dense coding with a general entangled state on
the Hilbert spaceCd ⊗Cd is achieved when the sender prepares the signal states by mutually
orthogonal unitary transformations with equala priori probabilities. It is also proved that the
optimal capacity of dense codingχ∗ satisfiesER(ρ) � χ∗ � ER(ρ) + log2 d, whereER (ρ)
is the relative entropy of entanglement of the shared entangled state.
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